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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (S1) units of measurement
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degree (angle)

cegree Fahrenhaeit

slectron voit

erg

erg/second

feot

foct-pound-force

gallon (U.S. liquid)

inch

ierk

jouleskilegram (J/kg) (radiation dose
absorbad)

kilotons

kip (1000 Ibf)

kisvinen? (ksi)

ktap

micron

mil

mile (international)

ounca

peund-force (Ibf aveirdupois)

pouna-force inch

pound-farcavinch

pound-forca/foot2

pound-forcasinch? (psi)

pound-mass (Ibm avoirduoois)

pound-mass-foot2 (momaent of inertia)

pouna/mass/fogtd

rad (radiation dose absorbed)
roentgen

shake

siug

torr (mm Hg, O°C)

4,184 000X E -3
3.7CO0000 X E +1
t,‘a !:‘ +* 273.15
1.74§329 X E -2

te=t’c + 459.67/1.8

1.502 19X E-19
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3.048000 X £ -1

1.353 818

3785 412X E -3
2.340000X £ -2
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1.C00 000

4.183

4448 222X E «3
8.894757 X E ~3
1.000000 X E +2
1.000000 X E -5
2.540000X E -3
1.609 344 X E +3
2.834952 X E -2
4.443222
1.129848 X E -1
1751268 X E +2
4.788 026 X E -2
6.894 757
4535924 X E -1
4214011 XE-2
1.061846 X E +1
1.00000 X E -2
2579760 XE <
1.000000 X E -8
1.459390 X E -1
1333 22 XE -1

joule per kilegram (J/kg)
giga becguerel (Gbg)*
degree kaivin (K)
radian (rad)

degree keivin (K)
jouie (J)

joule (J)

watt (W)

mater (m)

joule (J)

meter3 (m3)

meter (m)

joule (J)

gray (Gy)

terajoules

newton (N)

kilo pascal (kPa)
newton-secona/m2 (N-o/m?2)
metar (m)

mater (m)

meter (m)

kilogram (kg)

nawton (N)
newton-metar (N. m)
newtorvmeter (\N/m)

kilo pascal (kPa)

kilo pascal (kPa)
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kilogram-meter 2 (kg. m2)
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gray (Gy)™
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second (9)
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* The becquarsi (Baj) is the Si unit oi racicacivity; 1 Bq =1 avents.

** The Gray (Gy) is the Si unit of absorbed radiation.
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SECTION 1
INTRODUCTION

Hydrocodes have been applied to problems of nuclear fireball evolution for many years.
As the codes and the computers on which they ran became more robust, and their builders
and users more experienced, the calculations have become quite successful in modeling
observed fireball behavior. With realistic initial conditions, equations-of-state, and ambi-
ent atmosphere models, modern codes are capable of reasonable predictions of fireball
growth and rise rates, debris distributions, and shock/fireball interactions. Given this suc-
cess and current interest in the structured environment of intermediate altitude fireballs,
it was natural to attempt calculations at even higher resolution.

Early hydrocodes were first order and therefore, diffusive. As a consequence, their solu-
tions were usually "smooth". In the quest for ever higher resolution, and to control
numerical diffusion prior to turbulence modeling, modern codes are employing improved
numerics. SHARC (S-CUBED Hydrodynamic Advanced Research Code) has kept pace.
Within the past two years, its first phase (a Lagrangian advancement of the momentum
and energy equations) was modified for improved accuracy and its second phase (remap of
mass, momentum and energy) was replaced with a second order algorithm. During this
same period, a turbulence option employing a K-e model was also incorporated. Applica-
tion of the improved models to fireballs has yielded some unexpected results, specifically,
the development of large scale structures.

Simply stated, the second order results differ considerably from previous first order
results and are quite sensitive to seemingly slight changes in the implementation of the
numerics. One major consequence of the less diffusive numerics is that pressure and den-
sity gradients are maintained to the extent that conditions are favored for the growth of
instabilities. Our current turbulence model has not significantly altered the evolution of
the instabilities.

Higher order calculations with SHARC indicate that intermediate altitude fireballs are
unstable. This report describes the characteristics of the instabilities, the conditions neces-
sary for their formation, and their evolution in time. In the process of interpreting these
results we completed a series of calculations of known instabilities to characterize the
interaction between zoning and higher order differencing. Time and budgetary restrictions
have prevented the expenditure of the level of effort necessary to fully explore the results.




The numerical experiments which demonstrate the response of finite difference codes
to known instabilities are described in Section 2. In Section 3 we describe the characteristics
and evolution of our computed fireball instabilities. Section 4 discusses the S-CUBED tur-
bulence model and the results of its application to fireballs. Section 5 provides a summary,
conclusions and recommendations for further research.




SECTION 2
NUMERICAL EXPERIMENTS

The instabilities observed in the SHARC fireball calculations developed in relatively
complex flows involving large density differences, possible effects due to compressibility,
an imposed length scale due to atmospheric gradients, and curved streamlines. To aid our
understanding of the development and growth of instabilities we completed a series of cal-
culations of unstable flows in planar geometries. Although we gained considerable insight
through these efforts, we raised not a few unresolved questions.

The Rayleigh-Taylor instability (Chandrasekhar, 1981; Sharp, 1984) occurs in regions
where the pressure and density gradients are of opposite sign. Large gradients favor its
formation and growth. The best known and most studied example is where a lighter fluid
is attempting to support a fluid of greater density against gravity. The slightest perturba-
tion causes the surface to rapidly deform and the fluids to exchange places. Another
unstable example from gas dynamics occurs when a shock accelerates a light fluid into a
heavier fluid. The resulting instability is known as the Richtmyer-Meshkov or shock
excited Rayleigh-Taylor instability (Richtmyer, 1960; Sturtevant, 1987). Examples of calcu-
lations from both instabilities are presented in this section. Calculations of idealized
Kelvin-Helmholtz unstable flows were also planned but not undertaken due to budgetary
constraints.

2.1 DISPERSION RELATION.

Consider two uniform, viscous, incompressible fluids in a gravitational field. The fluids
are separated by a horizontal interface that is perturbed in amplitude by a disturbance of
wave number k. The density of the upper fluid is p1 and the density of the lower fluid is
p2. Linear, small amplitude theoryléhows that the disturbance amplitude Y satisfies the
equation

%% =nY. (1)

where t is time and n is growth rate. Chandrasekhar (1981) provides a thorough analysis of
this situation and a rather complex dispersion relation for the growth rate. Duff (1962)
gives the following approximation:




n = (Agk + v2k4)1/2 - vk2. (2)

where n is the growth rate, A the Atwood number = (p1 - p2)/(p1 + p2), g is gravitational
acceleration, k is the wave number and v is the kinematic viscosity. Equation (2) has the
same asymptotic limits as the expression by Chandrasekhar, namely

n2 > Agk k-0 1o A (ko) ©)

and approximately the same maximum growth (=np,) at the most unstable wave number
(=km). Expressions for nm and ky, are given below:

ng <8822 L 1[Ag|” @
m= s 2|2

2.2 GRAVITATIONAL EXCHANGE RAYLEIGH-TAYLOR EXPERIMENTS.

The CLOUD code (Libersky, 1983) was used to simulate the gravity driven rollup of the
unstable interface between a heavy fluid overlaying a lighter one. CLOUD is a finite differ-
ence, incompressible (anelastic approximation), hydrocode formulated with the stream-
function / vorticity transport equations. Its main advantage over SHARC is that it is
extremely fast (Su s/(cell-cycle). Its use for these calculations was many times more eco-
nomical than a similar set completed with the fully compressible SHARC code because the
latter's time step would have been limited by sound speed. It was felt, however, that the
CLOUD response would be similar to that from SHARC because they use essentially the
same advection algorithm. The assumption here is that numerical diffusion in the advec-
tion phase is the major source of departure from the inviscid growth rate.

Two groups of calculations, differing in the way the interface was perturbed, were com-
pleted with the CLOUD code. In the first group, the interface was initialized as a sinusoid
of finite amplitude. In the second, the interface was initially flat and the surface distur-
bance was allowed to develop in time by means of a sinusoidal velocity perturbation that
was normal to the interface. Figures 1a and 1b, respectively, illustrate the geometries.
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Each group included a series of calculations at several different resolutions; three for
the finite initial disturbance and four for the infinitesimal initial disturbance. Within
each series of calculations, the wave number of the applied perturbation was varied from
n/25 to x/2. Both groups of calculations were completed in a two-dimensional Cartesian
mesh 100 by 100 cm on a side. All calculations were completed at an Atwood number of
0.053 (density ratio of 0.9) and the density of the upper gas was 1.225 x 10-3 gm/cc. Tables 1
summarizes the zoning and the initial interface conditions.

Table 1. Initialization summary - finite amplitude disturbance.

Zoning Zone size Initial amplitude
50x 50 2.0 an 2 zones

100 x 100 1.0 cm 4 zones

100 x 100 1.0 an 2 zones

200 x 200 0.5 cm 1 zone

Table 1. Initialization summary - infinitesimal disturbance.

Zoning Zone size Initial velocity

50 x 50 2.0 cm 0.1cm/s

76 x 76 1.3 am 0.1cm/s
100 x 100 1.0 cm 0.1 em/s
200 x 200 05am 0.1cm/s

During each cydle of each calculation, the mesh was searched for the top and bottom
of the crests in the mixing region and this information, along with the time, was written
to a file. Subsequent to the calculation, a least-squares fit of exponential form
(y =a ¢ exp(n * T) ) was applied to the data to determine the growth rate n. Equation 2
was then solved for the effective viscosity.

The calculations that were initialized with an infinitesimal disturbance did not respond
until the surface had been sufficiently deformed by the perturbation velocity. For these
calculations, the time scale was shifted by the startup time before fitting and in addition,




the "a" term from the fit was interpreted as the minimum perturbation amplitude capable
of being seen by the code.

Before presenting the growth rate results, it is instructive to discuss qualitatively the
effects of zoning on the evolution of the interface. Appendices A through D show the time
evolution of the interface growth for several wave numbers from calculations initialized
with finite amplitude disturbances. The reader is referred to Table 2 for the contents of the
appendices.

Table 2. Appendix contents.

Appendix Problem zoning
A 50x 50 - 2 zone amplitude
B 100x 100 - 1 zone amplitude
C 100x 100 - 2 zone amplitude
D 200x200 - 4 zone amplitude

It is clear from the plots in the appendices that, for the same wave number disturbance,
problems zoned differently evolve differently. This is contrary to the lore from the days of
first order codes, which proposed that continued doubling of resolution would lead to
convergence.

Several processes contribute to the observed results. The first and most basic is that,
although the calculations were nominally initialized with the same wave number distur-
bance, finite zoning resulted in the introduction of components of higher frequency. Dif-
ferences evolve because variations in zoning result in variations in the dissipative and
dispersive characteristics of the advection. The resulting differences in the density field
then feed back to the driving terms and the solutions further diverge.

The center-concave crests in the 100 x 100 calculations at small wave numbers and the
corresponding center-convex crests in the 200 x 200 zone calculations are particularly strik-
ing. Also of note are the high frequency features at edges of the waves in the most finely
zoned calculations and the aliasing at the higher wave numbers.

Figure 2 compares the growth rates determined from the calculations with a finite ini-
tial disturbance with those computed from the calculations initialized with a flat interface.
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The results are remarkably similar although a clear trend indicates that, for a given wave
number and zoning, the calculations initialized with a flat interface had the highest
growth rates. Figure 3 exhibits the same data in non-dimensional form and indicates that,
in non-dimensional space, the results essentially collapse to a line. In these plots, the
growth rates were made dimensionless by dividing by the inviscid growth rate (Agk)1/2.
Dimensionless wave numbers were formed by expressing them as dx/A = 2rndx/k, where A:
is the wavelength of the imposed disturbance. The dimensionless wave number is
inversely proportional to the number of zones across a wavelength and is indicative of
how well the driving disturbance is resolved.

The version of CLOUD used in this series of calculations was inviscid. That is, no vis-
cous terms were included in the governing equations. The non-ideal response of the code,
however, can be interpreted by means of an apparent viscosity through Equation 2.

Figure 4 shows the apparent viscosity plotted against dimensionless wave number for both
series of calculations and indicates that less resolved zoning results in a correspondingly
high apparent mesh viscosity. Figure 5 shows the same information plotted in terms of a
disturbance Reynolds number = n/vk2 (Yih, 1988).

Most disturbing (confusing) about these results is the high apparent viscosity at the
smaller wave numbers. Examination of Equation 3 indicates that for small wave numbers,
the growth rates should approach the inviscid rates. Chandrasekhar (1981) stresses this
point and states "viscosity plays no role among the very long wavelengths". Several fac-
tors, acting alone or in concert, have been identified that can contribute to the observed
disparity between theory and our numerical results.

The first involves the possibility that equation 2 isn't adequate for our analysis and that
perhaps a more complicated model such as the diffusion analysis of Duff (1962) should be
employed. For example, Duff shows that diffusion decreases the amplitude of mean den-
sity. This effectively reduces the horizontal gradients, and therefore, the driving mecha-
nism for vorticity generation (g dp/dx). For poorly resolved (in amplitude) disturbances,
this leads to strong damping. The same mechanism is also active for long wavelengths
because the code responds to a surface of large radius-of-curvature as if it were flat. For
sinusoids, the largest radii-of-curvature occur at the crests.
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A second possibility involves the fact that, because inviscid growth rates are small for
small wave numbers, a systematic error in the procedures for growth rate determination
could result in a large apparent viscosity. One source of systematic error that was consid-
ered pertained to the magnitude of the amplitudes used in the analysis. The validity of
linear theory is based on the assumption that YK<<1, although Jacobs and Catton (1988,2)
observed that good agreement between theory and experiment is obtained for values of
YK=1. Our analysis used values of YK<x to obtain sufficient data for fitting at large wave
numbers. Growth rate comparisons with results obtained for YK<1 showed little differ-
ence, however.

For the calculations initialized with a flat interface, the two parameter least-squares fit
yields, in addition to the growth rate, a number that can be interpreted as the minimum
disturbance amplitude sensed by the code. These results, shown in Figure 6, indicate that
CLOUD responds to signals that are approximately 0.7 of cell size. The shallow slope indi-
cates that there is a slight trend towards a larger ratio as the signal becomes less resolved.

The plots in Appendices B and C show the interface evolution for identically zoned cal-
culations that were initialized with amplitudes of two and four zone heights. Growth rate
results from these calculations are displayed in Figure 7 and indicate that the interface per-
turbations that were initially better resolved were deformed at a slower rate. Equation 1
(and perhaps, one's intuition) says the opposite.

Although we have no clear explanation, we suspect the discrepancy is caused by an
incomplete initialization of the problem. We failed to include the initial velocity field
associated with the finite amplitude disturbance. These comments also offer an explana-
tion as to why the largest growth rates were noted in calculations in which interface was
allowed to grow from an undisturbed state.

2.3 RICHTMYER-MESHKOV EXPERIMENTS.

The SHARC code was used to demonstrate the response of a fully compressible finite-
difference hydrocode to a hydrodynamically unstable interface. Figure 1c shows the com-
putational setup within the two-dimensional Cartesian mesh. In all calculations, a Mach
1.25 shock was driven from a light gas into a heavy gas through an interface that was per-
turbed in amplitude by a disturbance of wave number k. The shock, traveling from left to
right, was initialized 20 zones to the left of the interface and was continuously fed from

13
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Figure 7. Effect of initial amplitude on dimensionless growth rates -
Rayleigh-Taylor calculations.
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the left boundary. The Atwood ratio, based on the density behind the shock (p2) and the
unshocked density (1.225 x 10-3 g/cc) to the right of the interface (p1) was 0.91. Analogous
to the CLOUD calculations, the zonal resolution and the wave number of the applied dis-
turbance were varied to determine their effects on the growth rate of the disturbance.
Table 3 summarizes the zoning and initial disturbance amplitude.

Table 3. Initialization summary - Richtmyer-Meshkov experiments.

Zoning Zone size Initial amplitude
76 x 50 20 em 2 zones
150 x 100 1.0 2 zones
300 x 200 0.5 cm 4 zones

Sturtevant (1987) and Youngs (1984) have presented analyses of the Richtmyer-
Meshkov instability. Sturtevant's work was experimentally based; Youngs numerical.
Both employed Richtmyer's (1960) results that showed "if the initial compression of the
interface and of the fluids is taken into account, the ultimate rate of growth of the corruga-
tion agrees, to within 5 to 10 percent, with that given by the incompressible theory."
Because the shock induced acceleration of the interface is short lived, g = Ujdt and Equa-
tion 1 becomes for the impulsive case

dY _ xUAY )
dr ~ KUl

where Ui is the post shock mean velocity of the interface and Y’ is the post shock ampli-
tude of the initial disturbance. "Thus in the impulsive case the growth is linear in time
rather than exponential, and acceleration in either direction leads to unbounded growth."
(Sturtevant, 1987). Considerable ambiguity exists for choosing Y’ and Uy as there exist two
time scales for the interaction of the shock with the interface, one in the fast gas and one in
the slow. We used the small compression model described in Sturtevant for the post
shock amplitude

L’=1-Hl, ©
Yo U
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where Us is the incident shock velocity and Y, is the initial perturbation amplitude. For
Ut we used 2.2 x 104 cm/s, a value numerically and theoretically determined for a flat
interface. No correction for the Atwood number was applied because Sturtevant indicates
that the post-shock Atwood ratio is not much different from the pre-shock, even for strong
shocks.

Appendices E through G show the time evolution of the interface growth for several
wave numbers from calculations zoned with 2 cm, 1 cm, and 0.5 am resolution. Clearly,
the more finely-zoned calculations do a better job in maintaining gradients. Little differ-
ence is evident in the amplitudes of the corrugations in the calculations with 0.5 and
1.0 cm resolution; both of which were initialized with an amplitude of 2.0 cm.

The calculations with 2.0 cm resolution were initialized with a disturbance amplitude
of 4.0 cn. For these, the absolute amplitudes remained greater, espedially in the high den-
sity fingers, but the growth rates were smaller.

Growth rates were determined for each calculation using procedures similar to those
described for the Rayleigh-Taylor experiments. A linear least squares fit, instead of the
previously used exponential fit, was employed in accordance with Equation 5. Figure 8
summarizes the growth rate data for the three levels of resolution used in the calculations
in dimensional and non-dimensional form. Considerable scatter is evident and the results
in non-dimensional form do not collapse to a line. Equation 5 indicates that the calcula-
tions with the larger initial perturbation (2 cm resolution) should have exhibited the high-
est growth rates. Because they did not, we conclude that the growth rate differences are
due to resolution.

2.4 DISCUSSION. -

The methodology presented in Sections 2.2 and 2.3 provides a means for quantifying
the non-ideal response characteristics of hydrocodes. A discussion of growth rate effects
alone, however, is incomplete. In fact, growth rate errors are symptoms of more basic
errors. Some sources of these errors are briefly discussed in this section. Rood (1987) pro-
vides a thorough review of the problems associated with advection algorithms and the
attempts that have been made to reduce these errors. Much of the material in the next few
paragraphs is based on that article. Material in quotes is taken verbatim.

17
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Numerical advection algorithms are subject to both dissipation and dispersion errors.
Dispersion errors cause the production of small waves and results "from different Fourier
components of the original distribution propagating at different phase speeds." Dissipa-
tion errors exhibit many of the properties of diffusion and this diffusion, in some contexts,
can dominate the problem. "Odd order schemes tend to be diffusive and even order
dispersive.”

Advection algorithms are also subject to aliasing errors which arise "when it is
attempted to resolve high wave number features on a grid that is too coarse to resolve the
features." Aliasing errors cause the reflection of higher frequency energy into lower fre-
quendies; errors which are evident in some of the plots in the appendices to this report.

The advection algorithms used in the SHARC and CLOUD codes are monotone. That
is, they are designed to prevent the generation of new maxima or minima, and thus
reduce dispersion errors. However, Rood (1987) quotes that "no linear scheme of second
order or higher accuracy can be made free from dispersion errors." Because phase errors
are worse for poorly resolved wavelengths, "distributions that are rich in high wave
number components, high-order accurate differencing may reduce the accuracy of the
solution.”

With the above comments in mind, "it can be argued that the short wavelengths
should be selectively diffused to eliminate those modes which are not accurately mod-
eled." This implies that for modes which approach the resolution of the mesh, subscale
turbulence modeling must be invoked to represent subscale process. Rood (1987) calls
physical diffusion "an essential mechanism in any transport model." A turbulence model
was not invoked in any of the numerical experiments discussed here.

Sharp (1984) states his belief that a Rayleigh-Taylor unstable interface is subject to the
Kelvin-Helmholtz instability and he poses the question as to whether this property might
eventually lead to the late time self-similarity and independence from initial conditions
noted by Youngs (1984). The finely resolved calculations presented in Appendix D show
the formation of unstable regions at the edge of the spikes that might result from a Kelvin-
Helmbholtz instability. Future work could address this question specifically. Another phys-
ical source for these features could be the baroclinic generation of vorticity due to density
gradients normal to the gravitational field. This mechanism has been noted previously by
Klaassen and Clark (1985) and Grabowski (1989).
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Close inspection of the plots from the high resolution, long-wavelength CLOUD calcu-
lations reveals that fine scale structure was evident at problem initialization. This indi-
cates that, if the late time structure developed from these features, some sort of scale
dependent filter (read diffusion) would be necessary to suppress their growth. However, it
is likely that both processes, the physical mechanisms mentioned in the preceding para-
graph, and the errors due to advection and initialization, contributed to the development
of the observed structure. This makes specification of the diffusion model more difficult,
especially if the response was driven mainly by initialization errors.

Features similar to the center concave corrugations evident in the long- wavelength
calculations at 1 cm resolution were noted in the cumulus cloud calculations of Klaassen
and Clark (1985). These authors also noted an associated downdraft that was not evident
in the current calculations. As mentioned earlier, we suspect the initialization procedures
in the current calculations introduced wave number components that grew at differential
rates.
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SECTION 3
INTERMEDIATE ALTITUDE FIREBALL INSTABILITIES

Calculations with the SHARC code indicate that the tops of intermediate altitude fire-
balls are unstable. These results contrast with prior first order results which, except for a
few instances, revealed a smooth evolution in time. This section reviews the develop-
ment and evolution of the instabilities in calculations of buoyant, transitional, and fully
ballistic fireballs. Where possible, knowledge and experience gained from the idealized
numerical experiments in the previous section is applied.

The plots in Appendix H demonstrate the development of instabilities in a calculation
of 200 KT at 50 km. First order results are provided for comparison. Differences are readily
apparent, most noticeably in the development of structure at the fireball edge and in the
definition of the torus region. Also note the enhanced gradients at the fireball top and
side. Although the differences shown in the appendix are specific to one yield and height-
of-burst combination, they are typical of those seen in other similar comparisons involv-
ing buoyant and transitionally ballistic fireballs.

Figure 9 shows the computed time development of the fireball from the same calcula-
tion of 200 KT at 50 km. The secondary thermal which develops at the fireball top subse-
quent to 50 seconds has not been noted in any prior calculation of this yield and height-of-
burst combination. Figures 10 and 11 present comparable plots for calculations of 4 MT at
45 km and 1 MT at 60 km, respectively. The 1 MT calculation employed non-equilibrium
chemistry. The other two were completed with an equilibrium equation-of-state.

One trend identified in viewing Figures 9 through 11 is that the tangential length scale
(with respect to the fireball diameter) of the structures at the fireball tops decreases as the
height-of-burst is increased. In addition, the largest growth rates are experienced directly at
the fireball top for the two lowest bursts. For the 60 km scenario, the largest growth rates
develop slightly off axis. The fireball top deformities evident in the plots are similar to
those shown by Klaassen and Clark (1985) in their cumulus cloud calculations. The latter,
however, were limited to thermodynamic and moisture fields and were later shown
(Grabowski, 1989) to result from advection errors.

We speculate that the instabilities noted in the SHARC calculations are not numerical
artifacts but result as the code attempts to respond to true hydrodynamically unstable
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Figure 9. Fireball evolution - 200 KT at 50 km.
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situations. Higher order differencing steepens the gradients near the fireball edge which in
turn favors the growth of instabilities at larger wave numbers than possible in first order
calculations. Wavelengths long with respect to the thickness of the gradient region see it as
a discontinuity and respond with growth at a large fraction of the inviscid rate. Wave-
lengths that are small with respect to the gradient region grow correspondingly slower or
are stable, depending on their size. Further work is needed to prove this premise but, on
the surface it seems consistent with published theory (McCartor, et al., 1973) and our own
numerical experiments.

Our original chemistry implementation in the second order code used an algorithm
that moved total mass in second order and constituent masses in first order. Because
chemical energy moves with the mass, this algorithm is diffusive in both mass and energy.
Figures 12 and 13 compare energy and density contours at 90 seconds from equation-of-
state and non-equilibrium calculations of 200 KT and 50 km. Results from the non-equi-
librium calculation are noticeably more diffuse and the secondary thermal at the fireball
top is much less developed. We attribute the differences to the diffusion in the advection
algorithm employed in the chemistry calculation. This suggests that, since diffusion has
such a large effect, physically real diffusive process like radiation and turbulence should be
included in fireball calculations.

Current calculations of fully ballistic fireballs are exhibiting instabilities unlike those
seen in other calculations. The features described in the preceding paragraphs formed in
regions where a light gas was pushing a heavier gas; the classic Rayleigh-Taylor unstable
situation. In the ballistic calculations, no such region forms. However, instabilities do
develop in the heaved region. At first, we suspected that responsibility lay with the unre-
alistic chemical rate processes related to the constituent diffusion noted above. We
addressed this by developing a new algorithm that transported the constituents, in addi-
tion to the total mass, in a second order manner. The new advection algorithm had little
effect on the development of the instabilities.

Figure 14 compares density contours at 60 seconds from first order and second order
material transport calculations of multi-MT at 80 km. The new advection algorithm was
used in the second order calculation. Structures in the higher order calculation are clearly
visible at the later time. Dr. Bill Shih of PRI suggested at the 1989 AESOP meeting in Santa
Barbara that instabilities could develop in the heaved region of intermediate altitude fire-
balls. Dr. Shih compared the flow in the heaved region to jet flows with an inflection
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point in the velocity profiles. Such flows are known to be unstable (Yih, 1977). Further
research would be necessary to definitively make this connection. Another possible source
of instability for these flows is what Book (1984) calls a convective instability. It develops
when the derivative of the entropy in the direction of motion is less than zero. It is possi-
ble that such situations could arise in flows which involve complex chemical rate pro-
cesses. It is pertinent to note that there is no unambiguous evidence for instabilities in bal-
listic fireballs.

So far in our discussions, we have ignored the real geometry of the problem. It is
assured that real fireball instabilities are three dimensional. They are subject to wind
shears, asymmetric disassembly effects, and three dimensional random perturbations.
Two dimensional axisymmetric calculations do not account for variations in the
azimuthal direction and real dynamical effects such as vortex stretching. Consequently,
questions arise as to whether results from two dimensional calculations are realistic. A
non-linear analysis of the Rayleigh-Taylor instability by Jacobs and Catton (1988) indicates
that "axisymmetric instabilities grow faster than other shapes in their respective geome-
tries". This suggests that current calculations, which force axisymmetry, might overesti-
mate the size of the structured region, and thus influence researchers to overstate its
importance.

Further questions come to mind concerning the ability of a finite-difference code to rep-
resent response realistically at all wave numbers. Our numerical experiments in Section 2
indicate significant damping at wavelengths not resolved over many zones. At best, there-
fore, the high wave-number cutoff is governed by the zoning, as in first order calculations.
Concomitant effects on the energy cascade from large to small scales are uncertain, but to
prevent aliasing, a subscale turbulence model is considered necessary for high resolution
calculations.
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SECTION 4
FIREBALL TURBULENCE MODELING

The SHARC turbulence model is based on the well known K-g model, (Launder and
Spalding, 1972), which employs transport equations for the turbulent kinetic energy K and
its dissipation rate €. The specifics of the version used in SHARC are described in the
reports by Barthel (1985) and Pierce (1986).

Two formulations of the turbulence model have been incorporated and tested in the
SHARC code. They differ in the calculation of the turbulent eddy viscosity (VT = Ck2/e).
In the first, which follows the derivation of Launder and Spalding (1972), C;, is a constant
with a value of 0.09. In the second (Rodi, 1976, and Lakshminarayana, 1986), C is a vari-
able that depends on the ratio of local production of turbulence to its dissipation. The
second formulation, called an algebraic Reynolds stress model, reduces to the first for equi-
librium turbulence; i.e. production equals dissipation. Both models have been validated
against incompressible jet flows, and the variable Cy; formulation has been successfully
employed in calculations of precursed airblast. To date, however, results from applying
these models to fireballs have been inconclusive.

Both formulations of the model have been applied to calculations of buoyant (200 KT at
50 km) and transition (multi-MT at 45 km) fireballs. A strong sensitivity to initial values
of K and € was found in calculations which employed the constant Cy, formulation. If the
time scale for dissipation (K/¢) was too large, unrealistically high turbulent energies were
generated very rapidly and the calculation ceased with energy errors. For small K/g, no
turbulence was generated. Three variable C, calculations, which had initial turbulence
energy to dissipation rate ratios (Ko/€o) of 105/1, 105/900, and 107/107, were completed for
200 KT at 50 km. These, for reasons discussed in subsequent paragraphs, failed to generate
sufficient turbulent energy to influence the fireball evolution noticeably.

The variable Cy; model is coded with limiters that prevent K and ¢ from falling below
their initial values. In calculations where Ko/€, was 107/107, limiters kept both K and e at
their initial values and C,, remained near the equilibrium value of 0.09. The net result
was a near-constant turbulent eddy viscosity of approximately 106. This appears to be an
extremely high value until comparison is made with data such as that presented in Fig-
ure 15 (Reaction Rate Handbook, 1979), which shows the range of VT as a function of
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altitude in the ambient atmosphere. The value of 105 falls well within the range of data at
507 km.

Calculations of 200 KT at 50 km and multi-MT at 45 km were run with an approxi-
mately constant VT of 106. Figures 16 and 17 compare the 90-second density contours with
their inviscid counterparts. Discernible but insignificant effects are evident. Comparison
with Figure 3 indicates that the numerical errors noted for the advection of multi-
component flows has a larger effect than the 106 viscosity.

The SHARC turbulence model accounts for turbulence generation due to the interac-
tion of the density and pressure fields through the term

G=CRTV—F;I‘-VP'VP @)

where P is pressure, p is density,and VT is the turbulent kinematic (eddy) viscosity. CRrr is
a constant (Barthel, 1985), that until recently was assigned the value of 4/3. Recent experi-
ence (Pierce, 1989) suggests a smaller value might be more appropriate. We often refer to
Equation 7 as the Rayleigh-Taylor production term, although "enthalpic production” (Issa,
1980) might be more generally applied.

The variable VT is a function of the local turbulent kinetic energy K and dissipation rate
e through the relation V1 = Cyk2/p. In the algebraic Reynolds stress model, Cy, is propor-
tional to the local production-dissipation ratio; Cy, is zero for very low and high values of
the ratio and peaks at the equilibrium value of 0.09 for ratios near 1. In the calculations
described in the preceding paragraphs, the Rayleigh-Taylor production was included in the
calculation of Cy. Consequently, turbulence production in regions where the Rayleigh-
Taylor term was large was artificially limited.

Pierce (1989) has suggested that the variable C}; be used only in connection with the cal-
culation of shear stresses and that it be constant in the calculation of the Rayleigh-Taylor
term. We have not yet applied this approach to intermediate altitude fireballs because of
time constraints and uncertainties in the proper value for Crt . An effort involving cali-
bration of Crt remains to be completed. The first step is to find a well documented exper-
iment that can be used as a test calculation.
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An alternate, and perhaps more general, approach would be to derive, in a manner
analogous to that used for the shear terms, algebraic stress equations for the Rayleigh-
Taylor terms. This approach has been applied with considerable success by Freeman (1987)
in a one-dimensional model. Implementation of this approach in SHARC would require
considerable work, due to differences in formulation and application between SHARC and
- the one-dimensional model.
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SECTION 5
SUMMARY AND CONCLUSIONS

A series of numerical experiments of the Rayleigh-Taylor instability were completed
with the CLOUD code. The calculations were inviscid and involved driving disturbances
that were nominally of a single frequency. Results indicate that numerical viscosity pro-
vides a major influence on the evolution of the instability and that the numerical viscos-
ity is decidedly zoning dependent. Diffusive effects are clearly evident in the least resolved
calculations. In addition, continued doubling of the resolution did not lead to the conver-
gence that is usually experienced with first order codes. Zoning dependent differences in
the dispersive and dissipative characteristic of the advection algorithm contributed to
these results, which were exacerbated by the introduction of higher than desired frequency
components at initialization. The latter were a direct result of attempting to initialize a
sinusoid on a rectangular grid.

Anomalous results were experienced at both the low and high wave number limits
imposed by the grid. Low wave number disturbances experienced the greatest viscosities.
Consequently, the inviscid growth rates predicted by theory at "small" wave numbers
could not be attained. Finite zoning provided an upper limit on the wave numbers that
could be resolved, let alone transported. Aliasing effects were evident in calculations of
"high" frequency disturbances.

A comparable set of calculations of the Richtmyer-Meshkov instability were completed
with the SHARC code. Growth rate effects were observed that were qualitatively similar to
those noted for the CLOUD calculations.

Taken in aggregate, the numerical experiments and our fireball results emphasize the
important influence of zoning and numerics on hydrodynamic calculational results. Most
importantly, they suggest that brute force attempts at high resolution calculations which
involve a large number of fine zones, without consideration of physically real diffusive
processes such as turbulence and radiation, will likely lead to erroneous results. Real pro-
cesses which take place on spatial scales of the order of the mesh size must be either explic-
itly included or parameterized in hydrodynamic calculations. In addition, more work is
warranted to further define the effects of the energy cascade truncation which results from
the high wave number cutoff imposed by the grid. The latter comment also applies to
azimuthal wave number limitations imposed by axisymmetric calculations.
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Two turbulence models, which vary in the calculation of the turbulent eddy viscosity,
have been implemented in SHARC and have been applied to fireball calculations. Results
were inconclusive. Shortcomings in the models have been identified and work is contin-
uing in these areas.
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Figure 18. 2.0-cm resolution - 2-zone initial amplitude
wave number = 0-.04 ox.
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Figure 19. 2.0-cm resolution - 2-zone initial amplitude
wave number = 0.06 *x.
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Figure 20. 2.0-cm resolution - 2-zone initial amplitude
wave number - 0.08 ex.
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Figure 21. 2.0-cm resolution - 2-zone initial amplitude

wave number - 0.10 ex.
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Figure 22. 2.0-cm resolution - 2-zone initial amplitude
wave number = 0.14 ox.
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Figure 23. 2.0-cm resolution - 2-zone initial amplitude
wave number = 0.26 *%.
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Figure 24. 1-cm resolution - 4-zone initial amplitude

wave number = 0.04 o7.
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Figure 25. 1-cm resolution - 4-zone initial amplitude
wave number = 0.06 *x.
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Figure 26. 1-cm resolution, 4-zone initial amplitude,

wave number = (0.08 en.

52




Rayleigh-Taylor Experiments with CLOUD Code

Density

E’“ss

8

=y

0. 20. 40. 60. 80. 100.

100. Density
80.
60.
5 <
> 40.
20.
0.
0. 20. 40. 60. 80. 100.

Density

Density

g 8

Y-cm
5

NANANNN

20.

0. 20. 40. 60. 80. 100.

Density

s 8

S
o

0. 20. 40. 60. 8. 100.

Density

100.
80.
60

g
< 40.

20.

0.

Density

1

0. 20. 40. 60. 8. 100.

Density

Times from upper left

(seconds)

0

0.4
0.6
0.8
1.0
1.2
1.4
1.6

Figure 27. 1-cm resolution, 4-zone initial amplitude,

wave number = 0.10 ox.
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Figure 28. 1-cm resolution, 4-zone initial amplitude,
wave number = (0.14 ex.
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Figure 30. 1.0-cm resolution, 2-zone initial amplitude,
wave number = 0.04 eT.
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Figure 31. 1.0-cm resolution, 2-zone initial amplitude,
wave number = 0.06 x.
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Figure 32. 1.0-cm resolution, 2-zone initial amplitude,

wave number = 0.08 ox.
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Figure 33. 1.0-cm resolution, 2-zone initial amplitude,

wave number = 0.10 ox.
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Figure 34. 1.0-cm resolution, 2-zone initial amplitude,

wave number = 0.14 ¢ 7.
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Figure 35. 1.0-cm resolution, 2-zone initial amplitude,

wave number = 0.26 ex.
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Rayleigh-Taylor Experiments with CLOUD Code
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Figure 36. 0.5-cm resolution, 2-zone initial amplitude,

wave number = 0.04 ex.
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Figure 37. 0.5-cm resolution, 2-zone initial amplitude,
wave number = 0.06 *x.
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Figure 38. 0.5-cm resolation, 2-zone initial amplitude,

wave number = 0.08 ex.
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Figure 39. 0.5-cm resolution, 2-zone initial amplitude,
wave number = 0.10 em.
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Figure 40. 0.5-cm resolution, 2-zone initial amplitude,

wave number = (.14 ex.
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Rayleigh-Taylor Experiments with CLOUD Code
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Figure 41. 0.5-cm resolution, 2-zone initial amplitude,
wave number = 0.26 7.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 42. 2-cm resolution, 2-zone initial amplitude,
wave number = 0.08 ox.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 43. 2-cm resolution, 2-zone initial amplitude,
wave number = 0.16 ex.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 44. 2-cm resolution, 2-zone initial amplitude,

wave number = 0.20 ox.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 45. 2-cm resolution, 2-zone initial amplitude,
wave number = 0.36 ex.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 46. 1-cm resolution, 2-zone initial amplitude,
wave number = 0.08 ex.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 47. 1-cm resolution, 2-zone initial amplitude,
wave number = 0.16 ox.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 48. 1-cm resolution, 2-zone initial amplitude,
wave number = 0.20 ex.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 49. 1-cm resolution, 2-zone initial amplitude,
wave number = 0.36 x.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 50. 0.5 cin resolution, 4-zone initial amplitude,
wave number = 0.08 ¢ «.




Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 51. 0.5-cm resolution, 4-zone initial amplitude,
wave number = (.16 ex.
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Richtmyer-Meshkov Experiments with the SHARC Code
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Figure 52. 0.5-cm resolution, 4-zone initial amplitude,
wave number = 0.20 *x.
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Figure 53. 0.5-cm resolution, 4-zone initial amplitude,
wave number = 0.36 *n.
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APPENDIX H
FIRST-ORDER VERSUS SECOND-ORDER COMPARISON OF 200 KT AT 50 KM

This section provides comparison plots of first order and second order SHARC calcula-
tions of 200 KT at 50 km. The plots clearly illustrate the magnitude of the differences
brought about by a second order advection algorithm.

By 30 seconds in the second-order calculation, the density gradients at the fireball edge
are much steeper than those in the first-order calculation, and the speed contours suggest
the presence of an instability near the fireball top. By 60 seconds, the instability is evident
in the pressure field and a secondary thermal has begun to form at the fireball top. The
minimum density in the second-order calculation is smaller by more than a factor of two
by this time. By 90 seconds, the secondary thermal is well developed and a bulge of approx-
imately the same wavelength has begun to form at the side. At two minutes, the torus in
the second-order calculation is still very well-defined and apparently undisturbed by the
unstable region above.
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